stablediffusion文生图设置(怎么调用)

共计 1450 个字符,预计需要花费 4 分钟才能阅读完成。

stablediffusion 文生图设置(怎么调用)

在 Stable Diffusion 中文网的 WebUI 页面上,我们可以使用文生图(txt2image)功能,让 AI 根据我们输入的文本来生成图片。

1. 参数解说

Stable Diffusion checkpoint:当前使用的模型。

Prompts 提示词:在这里填入正向和负向的提示词。

Sampling Methods 采样方法:不同的采样方法会得到不同的结果。

  • UniPC:2023 年发布的采样方法。
  • DDIM 和 PLMS:2022 年随 Stable Diffusion v1 发布的采样方法。

如果要兼顾品质和速度,建议优先尝试 UniPC、DPM++ 2M Karras 和 Euler a 这三种采样方法。

Sampling Steps 采样步数:建议至少设置为 20,在使用 Euler a 和 UniPC 采样方法时效果较好。而对于 DDIM,需要设置 80 以上的采样步数才能获得良好的结果。

Restore faces 脸部修复:使用脸部修复模型改善脸部生成效果,默认使用 CodeFormer,可以在设置中切换为 GFPGAN。

Tiling 平铺:生成类似地板花纹一样连续的图片。

Hires_fix 高清修复:可以提升图片的画质,但会消耗更多的 VRAM。

Upscaler:选择要使用的放大器。

Hires steps:高清修复的步数。

Denoising strength:降噪强度。

Upscale by:缩放系数。

Width x Height 图片宽高:生成图片的宽高,尺寸越大品质越好,但会占用更多的 VRAM。v1.5 模型默认宽高为 512×512,建议尝试 768×768 的 v2 模型。

其他可用的宽高比(ratio)请参考官方提供的表格。

CFG Scale:分类器自由指导的缩放比例,用于控制 AI 生成图片与提示词的相关度,数值越高,AI 会更加按照提示词生成图片。

Batch count:设置一次生成多少张图片。

Batch size:一次生成的图片数量,通常设置为 1。

Seed 种子码:用于生成图片的种子码。保存种子码有助于保留生成图片的风格。

Seeds Extra:用于测试更多种子码的变化。

Variation seed:变化的种子码。

Variation strength:变化的强度,值越高,生成的图片结果越不可预测。

Resize seed from width:根据宽度调整种子码。

Resize seed from height:根据高度调整种子码。

Scripts:加载用户编写的指令稿,内置有一些常用的指令稿。

保存提示词:可以保存和加载生成图片的提示词。

2. 实际操作

在 Stable Diffusion 中文网的 WebUI 页面上方可以看到当前使用的存盘点模型。如果需要切换模型,可以点击右上角的图标,在图形界面中选择要使用的模型。

在页面左上方填入正向和负向的提示词。

建议先尝试最快的 UniPC 采样方法,其次是 Euler a 和 DPM++ 2M Karras。将 Sampling Steps 设置为 20,Width x Height 设置为 512×512。

勾选 Restore faces 以改善脸部生成效果。

点击右上角的 Generate 开始生成图片。

根据显卡性能,大约一分钟后图片就会生成完成。可以右键点击放大并保存图片。也可以点击右下角的 Zip 按钮将图片打包下载为压缩文件。

左下角的 Batch count 可以设置一次生成多张图片。

如果对结果满意,建议保存种子码(Seed),以便日后使用,这样可以保留生成图片的风格。

无论是否保存图片,Stable Diffusion 中文网生成的图片都会自动保存在主程序文件夹下的 outputs 文件夹中。

正文完